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RESEARCH MEMORANDUM

A NOTE ON THE DRAG DUE TO LIFT OF DELTA WINGS
AT MACH NUMBERS UP TO 2.0

By Robert S. Osborne and Thomas C. Kelly
SUMMARY

In order to Indicate the effects of Reynolds number and other
variables on the drag due to 1lift of delta wings for Mach numbers up
to 2.0, the results of several investigations of wing-body combinations
having delta wings with aspect ratios from 2 to 4 have been assembled
for comparison and brief analysis.

The effects of Reynolds number, leading-edge radius, and thickness
ratio could generally be correlated with Reynolds number based on the
leading-edge radius as a parameter. The effects of leading-edge Reynolds
number on drag due to 1ift were large at Mach numbers less than 0.25.
However, with increases in Mach number, the effects decreased and were
almost negligible at a Mach number of 2.0. The effects of aspect ratic
were large, as would be expected.

It was indicated at least for subsonic speeds that improvement in
the drag due to 1lift might be obtained from wing modifications designed
to inhibit flow separation at the wing tip.

INTRODUCTION

Low-speed investigatlons of delta wings have Indicated that Reynolds

number veriations have large effects on drag due to 1ift (see ref. 1,

for exsmple). Because of the interest in the delta wing for transonic
and supersonic flight, 1t 1s important to investigate whether the same
scale effect exists at higher speeds. Accordingly the readily aveilable
experimental Investigations of delta wilngs for Mach numbers up to 2.0
have been reviewed and snalyzed with speclal reference to the drag due

to 1ift. The results of this analysis are given in the present paper.
Effects of Reynolde number, aspect ratio, thickness ratio, and leading-
edge radius are presented for delta wings in combination with bodies.
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The drag Increment assoclated with trimming the typlcel tailless airplane
conflguration 1s also discussed, and possible modifications for reducing
the drag due to 1lift are suggested.

SYMBOLS
Cp drag coefficient based on total wing area
Ct, 1ift coefficlent based on total wing area
dc
-—2-:5 drag-due-to-11ft factor averaged up to Cp = 0.3
dcCy,
M Mach number -
A aspect ratio
Ry ®. Reynclds number based on leading-edge radius
Rg Reynolds number based on wing mean aserodynamic chord
TR leading-edge radius in percent chord (measured streamwise)
c mean aerodynamic chord
t/c wing thickness ratio, fraction of chord

SOURCES AND EVALUATION OF DATA

Most of the data presented herein were cbtained from tests of wing-
body combinations on sting supports in wind tunnels or as free-flight
rocket models. Some of the confilgurations, however, included a vertical
fin, and for Mach numbers below 0.25 some wing-alone data have been used

in order to extend the range of RL.E. gbove 21 x 103. Most of the data

have been published (refs. 2 to 18), the remainder being unpublished dats
from the Langley 8-foot transonic tunnel, the L- by L-foot supersonic
pressure tunnel, and the low-turbulence pressure tunnel. A summary of
the data sources Including the Mach number range, range of Reynolds
number based on the wing mean aercdynamic chord, airfoll sectlon, aspect
ratio, leading-edge radius in percent chord, and reference number is
glven In table I,
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Where a usable lift-drag polar was avalleble, the value of the

d
drag-~due-to-1ift factor CDZ was taken as the slope of the straight
acr,

line through the point at Cp = O that best approximates the plot of

Cp ageinst CLZ in the lift-coefficient range from O to 0.3. When
dCp

the polars were not available, values of as presented in the

acg?
reference were used.

It is possible that at trensonic Mach numbers the drag due to 1lift
may be significantly affected by body size and shape and by the location
of the wing on the body (ref. 19). For the configurations presented
herein, however, the body characteristics at transonic speeds are con-
sldered sufficiently similar to allow the present comparisons. AL very
low speeds the results of reference 1 indicate that addition of a body
has 1ittle effect on the drag due to 1ift, and therefore wing-alone and
wing-body results are probably comparable at Mach numbers below 0.25.

DISCUSSION

Effects of Reynolds Number and Ieading-Edge Radius

dc
Values of the drag-due-to-lift factor Dz for several delta-wing
dCry,

configurations with aspect ratlos from 2.0 to 2.3 are plotted in figure 1
against Reynolds number based on the leading-edge radius and free-stresm
velocity. The wings had various symmetrical airfoil sections and leading-
edge radli and, except for the low-speed data, were generally less than

6 percent thick (table I and refs. 2 to 16). A scale of Reynolds number
based on mean aerodynemic chord with a typical leading-edge radius of
0.2-percent chord (representing an NACA 63A005 airfoll section, for
example) 1s also shown in order that the reader may be orlented to values
with which he is more familiar.

It 1s significant that data at any chosen Msch number but from
different sources fall on the same curve with relatively small scatter.
Apparently the leading-edge Reynolds number is the most significant
single parameter In this correlation of plane symmetrical delta wings.
The major differences in leading-edge Reynolds number shown are due to
differences in RE‘
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Large decreases in 5 are indicated with lncresses in Reynolds
dCy, B

number at very low speeds. It will be noted at high Reynolds numbers
that the drag due to 1lift at these speeds approaches the theoretical
value for full leading-edge suction as calculated by the Weissinger
method. (The data used, however, are for wing thickness ratios as high
as approximately 12 percent which are not considered favorable for -
high-speed flight.) With increases in Mach number, the effects of

4ac -
Reynolds number on ——QE decrease and become almost negligible at a

dc

L

Mach number of 2.0. At transonic and supersonic speeds, compressibility
effects determine the flow characteristics over the wing leading edge
and varisticns with Reynolds number would be expected to be small.

At supersonlc speeds, the dats Indicate that the drag due to 1ift
is much higher than for low speeds. Part of thils difference is accounted
for by the effects of increasing Mach number on the theoretical (full
leading-edge suction) value (refs. 20 and 21) as shown in figure 1. The
data, however, also Indicate a greater departure from the theoreticel
values at supersonic speeds than at low speeds.

Effects of Mach Number and Aspect Ratio

ac
The variation wlth Mach number of the drag-due-~to-lift factor D2
dacy,

is presented in figure 2 for aspect ratlos from 2 to 4. For these
aspect ratios, the drag due to 1ift decreases with an increase in Mach
number fram 0.60 to approximately 1 and increases repidly at supersonic
Mach numbers. For thin wings with relatively sharp leading edges, the

dac
leading-edge suctlon 1s largely lost and the variation of ——2— with
acr?
Mach number is approximately the same as the variation obtained using
the reciprocal of the experimental lift-curve slope.

As would be expected, marked reductions in the drag-due-to-1ift
factor result from an increase in aspect ratio. For the configurations

dac
employing wings of aspect ratios 3 end 4, reductions in __EE amount
dcCy,
to about 28 and 4O percent, respectlvely, at subscnic speeds and 20 and
30 percent, respectively, at superscnic speeds as compared with the
values for the aspect-ratio-2Z configuration.
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Effects of Thickness Ratlo

Some effects of thickness ratio on the drag due to 1ift of delta
wings of aspect ratio 2.0 and 2.2 are shown in figure 3. The data

4ac
follow the trends shown in figure 1. The decrease in —QQE with
dcCq,

increasing thickness ratio was expected because the increase in leading-
edge radius causes an incresse in lesding-edge Reynolds number.

It is noteble that the 8-percent-thick wing exhibits an incresase
in dreg due to 11ift with increasing Mach number at subsonic speeds, a
trend opposite to that shown for the thinner wings, indicating again
that at high subsonlc speeds, compressibility effects rather than
Reynolds number fix f£low over the leading edge. .

Effects of Wing Modifications

Deta presented in references 22 and 23 indicste that wing modifica-
tions such as twist and camber offer reductions in the drag due to 1lift
for delta wings when the Mach number perpendicular to the leading edge
is less than approximately 0.70. Also, a recent investigation (unpub-
lished data) indicates that chordwise fences are effective at transonic
speeds. The data shown in figure 4 were obtailned from model tests of
an alrplane configuration having a delta wing with an aspect ratio
of 2.2 and NACA 000L-65 airfoil sections. The test Reynolds number

based on the leading-edge radius was approximately 8,000 (Rg = 4,5 x 106)

The addition of chordwise fences extending from the leading edge
to 80 percent of the chord at the 65-percent wing semispan station
decreases the drag due to 1ift approximately 20 percent at Mach numbers
from 0.6 to 0.95. At higher Mach numbers the beneficiasl effects decrease,
and at a Mach number of 2.0 no gain is indicated. The faillure of the

ac

fences to improve Dz &t a Mach number of 2.0 might be expected since
dCy,

the effect of fences 1s similar to an increase in Reynolds number and

the effects of Reynolds number were shown In figure 1 to be greatly
reduced at a Mach number of 2.0. The lncrement 1n drag due to 1lift

dac

between the lowest experimental value of Dz and the theoretical
dCy,

value remained essentially constant for all the Mach numbers tested,

Sﬂ Q tﬁ.‘? o ﬁﬁ
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Effects of Trimming a Teilless Configuration

Longitudinal control of a delta-wing ailrplane by tralling-edge
elevons may result in a substantial penalty in drag due to 1lift for
trim conditions because the effective tail length i1s relatively short
and large control surfaces and deflectlons may be required to produce
the longltudinal balancing moments. - S

It is indicated in reference 24 that trimming s wing-body combina-

tlon with a deltas wing of aspect ratlio 2 (Rg =3 X lO6> Increased EEQE
acy,
by from 18 percent to 55 percent over a Mach number range from 0.6
to 1.70. The elevon area was gpproximately 20 percent of the total
wing area and the statilc margin varled from 5 to 15 percent of the mean
aerodynemic chord. For larger static margins the effects of trimming
would be expected to be more severe. The large increase 1n the drag-
due-to-1ift increment for trim with increasing Mach number 1s due to =a
combination of increased longitudinal stebility and decreased control
effectiveness.

Effects of elevon deflectlon on minimum drag aend drag due to 1ift
for a delta-wing conflguretion are presented and discussed in some
detsil in reference 6.

Langley Aeromnautical Laboratory,
National Adviscry Committee for Aeronsutics,
Langley Fleld, Va.
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TABLE I.- SUMMARY OF DATA SOURCES
Asléigt Airfoil section|M range Rz range r;,.g.| Reference
ra *

2.0 0003-63 0.60-1.7 5.0x 106 |0.10 3

2.0 0005-63 24-1.7 3.0 x 106 .28 "

2.0 0008-63 2ho1.7 3.0 x 109 .70 5

2.0 |5 percent thick| .18-.95 5.3 x 100 .25 7
double wedge 6

2.0 |5 percent thick| .5-1.5 | .67-.85 x 10° [«.05 9
double wedge 6

2.0 |5 percent thick| .5-1.5 | .67-.85 x 10° |x.05 10
double wedge

2.0 0005 (Mod. ) .13 15.3 x 106 .28 16

2.2 | 0004-65 (Mod.)|1.22-2.16| 1.0 x 106 .18 2

2.2 | 0004-65 (Mod.)| .70-.9% | 1.5-3.5 x 106 | .18 8

2.2 | 0004-65 (Mod.)| .60-2.01| 3.8-7.3 x 106 | .18 |Unpublishea

2.31 | 65(g)A006.5 | .75-1.7 |11.0-24.0 x 106| .27% 6

2.31 654003 .12 2.77 x 100 .057 11

2.31-| Flat plate .13 1.6 x 100 1.2 12

2.31 0012 .13 1.62 x 106 [1.58 12

2.31 | Flat plate .13-.27 | 1.5-3.0 x 106 |1.24 13

2.31 65-010 <.25 6.0-9.7 x 108 | .687 14

2.31 65-010 .07 6.0 x 106 687 15

2.31 654002 .15-1.125| 2.6-3.5 x 10° | .025|Unpublished

2.31 654006 .15-.60 | 3.0-9.3 X 109 .229|Unpublished

3.0 0003-63 .60-1.7 4.8 x 106 .10 17

4.0 |3 percent thick| .60-1.7 4.15 x 10 | .oks 18
biconvex
(mod. )
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